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Abstract. The paper presents the dynamic model of the trajectory 

generating mechanism of an anthropomorphic robot. There was chosen the 
anthropomorphic robot because the structure of this robot is often used in 
construction of robots. The recursive formulation Newton-Euler was used to 
describe the dynamic model. 
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1. Introduction 

 

Generally, the dynamic analysis of robots is a complex problem, 
requiring a huge amount of calculus. Through direct dynamic analysis of robots 
is aimed to determine the kinematic parameters of the robot with the hypothesis 
that the motor moments from driving pairs and the external forces are known. 

Most papers in the field have a classic approach for the expression of 
the motion equations based on Lagrange equations. The first algorithms for 
inverse dynamic of robots have used Newton-Euler formulation. The most used 
algorithm is the recursive Newton-Euler algorithm (Featherstone & Orin, 2000). 
The use of recursive formulation of the Lagrange equation have shown that this 
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formulation is slower (requires a bigger time) than the algorithm using recursive 
formulation Newton-Euler (Sciavicco & Siciliano, 2000). 

In this paper, there was realized the dynamic model of the positioning 
mechanism for an anthropomorphic robot. For dynamic model, the recursive 
formulation Newton-Euler was used, establishing the motion equation for the 
positioning mechanism. In the second stage, the motion equation was solved 
using a numerical method, using the Runge-Kutta algorithm. 

Solving the motion equation of the positioning mechanism has allowed 
establish the variation of the position angles and the angular speeds of the 
elements forming this mechanism. 
 

2. Recursive formulation Newton-Euler 

 
For the motion analysis and control of a robot, there are known more 

methods. The most used are: Newton-Euler formulation and Lagrange equation 
of second species. 

With the hypothesis that each element of the robot is a rigid body, then, 
the distributed mass of each element is completely characterized if there are 
known the mass center position and the inertia torsor of the element. The 
required forces for a specified motion are a function depending on the desired 
acceleration and the mass distribution of elements (Craig, 2005). 

In order to apply the Newton-Euler formulation, there is necessary to 
determine the linear acceleration of the mass center and the angular acceleration 
of the element. 

 
2.1. Calculus of Speed and Acceleration 

 
In order to calculate the inertia forces and moments acting on robot's 

elements, there is necessary to calculate the angular speed and acceleration and the 
linear speed and acceleration of the mass center, for each element (Corke, 2001). 

More methods are known to calculate the kinematic parameters of the 
mass center (McKerrow, 1991). Thus, in order to establish the link between the 
speed of kinematic pairs and the angular and linear speed of the final effector, 
the geometric Jacobian matrix is used. In the case of locating the final effector 
with respect to a reference system using a system of analytical equations, the 
Jacobian matrix is obtained by derivation of respective equations with respect to 
the variables of kinematic pairs (Doroftei, 2006). 

In this way, the analytical Jacobian matrix is obtained, which differs, in 
general, by the geometric one. Using these matrixes in calculus of kinematic 
parameters of mass centers requires a huge amount of calculus. 

With the goal of reducing the amount of calculus, there is used the 
method of “propagation” of speed and acceleration from an element to another 
one. In this case, the calculus starts with element connected to the robot base. 



Bul. Inst. Polit. Iaşi, t. LIX (LXIII), f. 1, 2013                                 41 
 

The kinematic parameters of each element are calculated in a recursive 
manner starting with the first mobile element and finishing with the final 
effector. 

For the beginning, the angular speed and acceleration are calculated for 
each element with respect to preceding element. 

If we consider two consecutive elements in the structure of a robot, 
namely i-1 and i, then the angular speed and acceleration are determined with 
relations: 

• angular speed (Doroftei, 2006): 
− for the rotation pair 
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• angular acceleration: 
− for the rotation pair 
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− for the translation pair 
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relative angular acceleration of kinematic pair {i}, related to reference system 
{i-1}, with respect to reference system {i-1}. 

For propagation of linear speeds and accelerations, the following 
relations are used: 

• linear speeds 
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− for rotation pair: 
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− for rotation pair: 
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where: 0,
i

iv  is absolute linear speed of origin Oi; 
1
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i

iv−
−  − absolute linear speed 

of origin Oi-1; 
1i

i p−  − the translation vector for transformation from reference 

system {i-1} to reference system {i}; 1i

i p−
ɺ  − relative linear speed of kinematic 

pair {i} related to reference system {i-1}. 
• linear accelerations 

− for rotation pair: 
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− for translation pair: 
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where: 0,
i

ia  is absolute linear acceleration of origin Oi; 
1

0, 1
i

ia−
−  − absolute 

linear acceleration of origin Oi-1; 
1i

i p−
ɺ  − relative linear speed of kinematic pair 

{i} related to reference system {i-1}; 1i

i p−
ɺɺ  − relative linear acceleration of 

kinematic pair {i} related to reference system {i-1}, with respect to reference 
system {i-1}. 

The linear accelerations of mass centers are determined with relation: 
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where: ,
i

i Cip  is position vector of mass center of element i with respect to origin 

Oi of reference system {i}. 
The gravity acceleration: 
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, g0
0 ⋅= Rg ii  (10) 

 
2.2. Calculus of Forces and Moments 

 
After the speeds and the acceleration of the kinematic elements were 

determined, the forces and moments acting on each element can be calculated. The 
forces and moments acting on element i of a serial robot are represented in Fig. 1. 
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Fig. 1 − The forces and moments acting on the element i. 

 
The calculus of forces and moments starts from the final effector and 

ends at the fix element. For the beginning, the inertia forces and moments are 
calculated with the following relations: 
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where: *i

iF  is the inertia force acting at the mass center of the element i; *i

iM  − 

the inertia moment acting at the mass center of the element i; 0,
i

Cia  − linear 

acceleration of the mass center of element i; i

iI  − the inertia matrix of element i 

with respect to its mass center; im  − the mass of element i. 
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At the next step, the balance equations for forces and moments acting 
on element i, are established with respect to the mass center of the element. 
After the forces and moments were written with respect to reference system {i}, 
they have to be transformed with respect to reference system {i-1}. This is done 
with the following relations: 
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where: i g  is the vector of gravity acceleration; 
1 1

1, 1 1, 1
i i i i i

i i i i i i ip R p R p− −
− − − −= ⋅ = ⋅ ; ,

i

i Cip  − the position vector of mass center 

of element i with respect to origin Oi of the reference system {i}. 
The driving moments and the actuator forces are obtained by projecting 

the constraint forces on the axis of corresponding driving kinematic pair: 
− for rotation pair: 
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− for translation pair: 
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3. Numerical Results of Dynamic Model 

 
The numerical results of dynamic model are obtained for an 

anthropomorphic manipulator represented in Fig. 2. 
If we consider the reference systems attached to the kinematic elements 

as shown in Fig. 2, then the Denavit-Hartenberg parameters for standard 
convention are those represented in Table 1. 

 
Table 1 

  The Denavit-Hartenberg Parameters 

i ai αi di θi 

1 0 2π  L1 21 πθ +  

2 L2 0 0 2θ  

3 L3 0 0 3θ  
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Fig. 2 − Structural scheme of the anthropomorphic manipulator. 

 
Using relations (1) - (4), the angular speeds and accelerations of the 

kinematic elements of anthropomorphic manipulator are determined. With the 
relations (7) and (8) the liner accelerations of the mass centers of elements are 
determined. For symbolic calculus of speeds and accelerations, it is used 
Toolbox Math Symbolic from MatLab. 

For the calculus of inertia forces and moments, the relations (11) and (12) 
are used, and for the calculus of constraint forces and moments acting in driving 
pairs the relations (13), (14) are used. These forces and moments lay at the basis of 
determining the driving moments in driving pairs. The relations for driving moments 
are used to determine the motion equations of anthropomorphic manipulator. 

In the case of anthropomorphic manipulator, all kinematic pairs are rotation 
pairs and hence, the driving moments from driving pairs are determined with relation 
(15). The motion equations of the anthropomorphic manipulator are as follows: 
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The motion equations for the anthropomorphic robot can be written also 
under matrix form: 
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With the hypothesis that the matrix of masses M is nonsingular 
(nonzero determinant), then relation (18) can be written as: 
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For dynamic modelling of the displacement of the anthropomorphic 
robot, a calculus code was realized. That calculus code was run under MatLab. 
The motion equations were solved through the numerical method Runge-Kutta 
of fourth order. 

After solving the motion equations, there are determined the variation 
of position angles of the elements and the variation of angular speeds of the 
elements. 
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For a given time interval, in Fig. 3 there is presented the variation of 
position angles of the elements. Also, in Fig. 4 there is presented the variation 
of angular speeds of the elements. 

 

-10

0

10

20

30

0.0 0.2 0.4 0.6 0.8 1.0

θ

t

1

2

3

    

-30

0

30

60

90

0.0 0.2 0.4 0.6 0.8 1.0

ω

t

3
1

2

 
      Fig. 3 − Variation of position angles.            Fig. 4 − Variation of angular speed. 

 
For dynamic modelling of the displacement of the anthropomorphic 

robot, a calculus code was realized. That calculus code was run under MatLab. 
The motion equations were solved through the numerical method Runge-Kutta 
of fourth order. 

After solving the motion equations, there are determined the variation 
of position angles of the elements and the variation of angular speeds of the 
elements. 

For a given time interval, in Fig. 3 there is presented the variation of 
position angles of the elements. Also, in Fig. 4 there is presented the variation 
of angular speeds of the elements. 

 
4. Conclusions 

 
In general, for a robot, the direct dynamic analysis implies a huge 

amount of calculus. In order to decrease the amount of calculus, the recursive 
formulation Newton-Euler was used. 

By using the proposed dynamic model, there are obtained information 
regarding if the moments of actuators are big enough to put the robot to work. 
Also, there is established if the external load applied to the final element does 
not block the work of the robot. 
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MODELUL DINAMIC AL UNUI ROBOT ANTROPOMORF 
 

 (Rezumat) 
 

În lucrare se prezintă modelul dinamic al mecanismului generator de traiectorie 
pentru un robot antropomorf. A fost ales robotul antropomorf, deoarece structura acestui 
robot este des folosită în construcŃia roboŃilor. Pentru realizarea modelului dinamic s-a 
folosit formularea recursivă Newton Euler. În prima etapă au fost determinaŃi parametrii 
cinematici ai centrelor de masă şi apoi au fost determinate ecuaŃiile de mişcare ale 
elementelor robotului. În etapa a doua au fost rezolvate aceste ecuaŃii folosind 
algoritmul de calcul numeric Runge Kutta. 

 
 


